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1. Introduction

Metallic foams and porous metal structures are valuable for their unique characteristics such as
high specific strength, energy absorption at constant crushing load, efficient heat transfer and
acoustic properties, all of which can be tailored by controlling the porosity.1–3 Many techniques
for generating metal foams exist, but the vast majority of metal foam production is through liquid
state processes such as the melt processing of aluminum by gas injection or decomposition of a
dispersed foaming agent.4 Aluminum has dominated the metal foam industry due its low melting
temperature and relative stability in air.5 More reactive metals and those with higher melting
temperatures require special processing, usually through solid-state techniques.3,6–11 In the
solid-state foaming process,12,13 metal foams are typically produced using a 2-step process: 1)
entrapping gas within the interparticle voids during powder consolidation and 2) heating to
expand the entrapped gas such that the internal pressure exceeds the yield strength and enables
plasticity or creep to increase porosity.14 While some powder metallurgy processes (e.g., using a
polymer foam as a fugitive template7) can exceed 85% porosity, it is more common for powder
metallurgy processes to produce porosity levels between 20% and 40%.5,14 In fact, Elzey and
Wadley14 calculated that the limit of the solid-state foaming process by gas entrapment is
approximately 65% porosity, even under ideal, superplastic conditions. Experimentally, this
method has produced foams with porosity only as high as 53%,15 but porosity using solid-state
foaming has typically been limited to approximately 40%. These relatively low porosity levels
(compared to liquid-state processes) constrain the applications of metal foams produced via
solid-state foaming.

The current limitation of solid-state expansion is based on gas entrapment between solid particles
during consolidation. In this model, the initial gas pressure and foaming temperature determine
the resulting porosity. However, if the expanding gas is not limited to just that which is trapped
between particles, but is also located within particles, solid-state foaming may assume a character
more akin to expandable polymers that foam from the constituent pellets. This concept is a
paradigm shift in terms of the solid-state foaming process and the achievable levels of porosity. In
this technical report, we examine the microstructure and morphology of a copper–antimony
(Cu–Sb) alloy that expands to porosities of close to 40% within individual particles, resulting in
absolute porosity of 69% in sintered samples.
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2. Solid-State Foaming Technique

2.1 Experimental Methodology

The Cu-Sb alloy powder was formed by mechanically alloying Cu and Sb (Alfa Aesar, 99.9% and
99.5%, respectively) at cryogenic temperature (−196 ◦C) for 4 h using a modified SPEX 8000M
Mixer/Mill. The elemental powders were combined to achieve 5 atomic percent (at%) Sb in Cu.
The alloyed powder was annealed at 600 ◦C for a period of 1 h under 3% H2 (balance Ar).
Microscopic examination of the powders was carried out using an FEI Nova Nano Lab 600 dual
beam microscope using scanning electron microscopy (SEM). Cross-sectional analysis was
performed using a focused ion beam (FIB). The grain size and grain orientations were measured
using focused ion beam channeling contrast imaging (FIBCCI) images and electron backscatter
diffraction (EBSD), respectively. FIB serial sectioning of the individual powder particles was used
to visualize and quantify a representative 3-dimensional (3-D) pore structure in a volume 25.6-µm
wide, 22.1-µm high, and 12.5-µm deep. The as-milled powders were also compacted in a 3-mm
die. The compacts were weighed before and after annealing to measure the apparent density.

The annealed Cu–Sb particles were approximately 60 µm in size and irregularly shaped after
foaming (Fig. 1). Cross-sectional characterization of these particles revealed that significant
expansion had occurred within each particle (Fig. 1). The amount of porosity shows a relatively
even distribution throughout each particle, with a mean equivalent pore diameter of 1.02 µm with
a standard deviation of 0.89 µm as measured from 2-dimensional (2-D) images (5,588 pores).
This is in contrast to the typical pore sizes reported as a result of gas expansion studies, which are
approximately 250 µm, more than 2 orders of magnitude larger than the pore sizes observed here.
At the given temperature and hold time (600 ◦C, 1 h), the pores are found to be highly
interconnected, not only with each other, but with the free surface of their respective particles as
well (Fig. 2). A video of the FIB serial sectioning of a single particle16 shows the continuity of the
pore structure caused by extensive void coalescence. Interestingly, there is no straight path for
porosity to connect surfaces even in small particles. Rather, the porosity forms a tortuous passage
from surface to surface, which is not entirely obvious without reconstructing the 3-D pore
structure.
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Fig. 1 SEM imaging of powder particles shows the following features: a) loose powder morphology, b)
cross section of large powder particle showing porosity extends through the bulk, c) cross section
through the center of a powder particle, and d) the corresponding FIBCCI image
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Fig. 2 SEM imaging of powder particles shows porosity intersecting with the surface of the powder. The
inset image shows the porosity just below the surface after FIB through a cross section of the
particle.
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Understanding the microstructure of the Cu alloy at different stages within this process is
important because of its relationship with mechanical properties. The mechanical alloying used
herein is known to efficiently produce nanocrystalline metals17 that often exhibit exceptional
strengths (e.g., over 10 times greater tensile yield strength for nanocrystalline Cu than for
conventional, coarse-grained Cu18). The as-milled grain size and hardness of the Cu–Sb alloy
were 9 nm and 3.5 GPa, respectively, as determined by X-ray diffraction analysis using Scherrer
estimation and Vickers microindentation of individual particles. A high-strength matrix will
suppress void expansion, but pure nanocrystalline materials are also notoriously sensitive to grain
growth at elevated temperature where they rapidly lose their strength (i.e., Cu begins grain growth
at 75–100 ◦C19,20). Herein, we have used a Cu alloy with 5 at% Sb, which has been reported to
have increased strengths and thermal stability (a higher grain growth temperature) over pure
nanocrystalline Cu.21,22 In addition to its influence on grain growth, Sb may also influence the
minimum foaming temperature. In a prior study,21 Sb was a poor stabilizing agent in
nanocrystalline Cu at the expansion temperature of 600 ◦C applied here, which is potentially
related to the large equilibrium solubility of Sb in Cu at elevated temperature (i.e., 5 at% Sb is
fully soluble in Cu by approximately 425 ◦C23). Additionally, the presence of Sb is thought to
enhance solid-state foaming since it dramatically lowers the solidus temperature to approximately
660 ◦C.

Figure 3 shows a FIB cross section of a foamed particle. FIBCCI was used to determine the grain
size within the structure and several features are apparent. First, the grain size is extremely small
for a foamed material, with many of the grains being approximately 1–5 µm in diameter. Second,
there is an abundance of twins present throughout the bulk of the material. Third, there is a
significant presence of nanoscale grains primarily occurring at free surfaces within pores and at
the particle exterior (see Fig. 3c). EBSD confirms the small grain size and shows a random texture
(Fig. 4). Additionally, dispersive X-ray spectroscopy showed no variation in composition at these
locations as compared to the bulk. The engineering of hierarchical features (nanograins, fine,
micron grains and pores) in fully foamed parts may lead to a greatly enhanced strength-to-weight
ratio and unique applications. Recent reports of similarly graded microstructures resulted in a
2-fold increase in strength with no loss in ductility.24
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Fig. 3 FIBICC imaging of Cu 5% Sb alloy annealed at 600 ◦C for 1 h: a) low-magnification image of
particle cross section showing considerable porosity, b) high-magnification images showing pore
structure, and c) image of particle surface consisting of small grains within magnified inset
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Fig. 4 EBSD of foamed particle cross section. Note the random orientation and the confirmation of a fine
grain size at free surfaces.
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2.2 Foam Microstructure Characterization

FIB serial sectioning and subsequent image analysis steps were performed to quantitatively
describe the nature of porosity in the particles. Figure 5a shows an example of one of the 2-D
images collected along with the different stages of analysis necessary to reconstruct the 3-D
volume (Fig. 5b). The 4 stages are shown from left to right: 1) initial image, 2) image with
manual segmentation, 3) binary image highlighting pores (white) and matrix (black), and 4) fused
image with matrix (green), pores (blue), and pore-matrix interface (red). Once the pores were
identified, adjacent slices were examined to further refine the image segmentation process.
Fifty-one images (2,048 pixel × 1,768 pixel area, 12.5-nm/pixel resolution, 250-nm spacing
between images) were then used to fully reconstruct the 3-D volume in the particle, as shown in
Fig. 5b. The foreground image shows the matrix in green and the background image shows the
pore structure in green along with the appropriate dimensions of the 3-D volume.

Fig. 5 a) 2-D images showing the different stages of analysis necessary to reconstruct the 3-D volume
including image capture, image segmentation, binary image, and fused image. b) 3-D volume
reconstruction of matrix structure (foreground) and pore structure (background) within a particle.

A number of porosity statistics can now be ascertained from the 3-D volume. First, the volume
fraction porosity of the 3-D foam is 37.1% with a 3.6% standard deviation in pore area fraction
from slice to slice. Second, 2-point correlation functions indicate that a representative length scale
for correlation in the 2-D slices is on the order of 1–3 µm, as quantified by the convergence to the
square of the area fraction, f 2, at larger distances. This length scale is in line with calculations of
mean equivalent pore diameter (1.02 µm for 5,588 pores). Third, the pores in the 2-D slices are
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nonspherical, as evaluated from the mean eccentricity value of 0.70 (i.e., 0 is perfectly circular, 1
is a line). This finding is in agreement with studies showing that pore coalescence and
interconnectivity results in a more tortuous pore structure.14 Further supporting this finding, the
3-D connectivity of the pore structure revealed that 92.1% of the porosity is interconnected (i.e.,
“open” porosity). Last, the mean planar surface area per unit volume from the 2-D images is
calculated to be 0.94 µm2/µm3 or 9.4 × 105 m2/m3, which is related to the “true” surface area per
volume of 1.2 × 106 m2/m3.25 In fact, this true surface per volume is equivalent to 0.235 m2/g,
which compares favorably to the experimentally-measured value of 0.390 m2/g (i.e., using the
BET method). As permeability is inversely correlated to specific surface area, the high specific
surface area of these particles will result in much lower permeabilities.

2.3 Foaming Mechanism

Prior work has shown that cryogenic milling is capable of producing metal foams by a subsequent
annealing step.26 In that study, the expansion of the metal was attributed to entrapment of argon
(Ar) within the metal structure during milling. This mechanism was proposed because milling
was conducted in an Ar atmosphere at liquid nitrogen temperature, where Ar exists in solid form.
For the high degree of foaming reported in the present study to occur, we explored an alternative
(potentially more plausible) explanation for this phenomenon, which is as follows. The Cu
powder used to create the alloy was produced by gas atomization, and the manufacturer’s
certificate of analysis reports an oxygen content of approximately 5,000 ppm. Hence, we tested
the hypothesis that the expansion mechanism is related to the oxide content of the powder. It is
known that oxygen can be incorporated into Cu during atomization, and hydrogen reacts with
oxygen during reduction to create steam within particles.27 Copper oxides, which are effectively
broken down and distributed during mechanical alloying, are readily reduced under the conditions
of the annealing used here.28,29 Subsequent annealing under hydrogen causes the reduction of the
Cu oxide and the expansion of trapped steam. The oxide reduction and expansion mechanism was
preliminarily tested by annealing compacted samples under rough vacuum (better than 1–2 Torr)
and comparing the results to the samples annealed in 3% H2 (balance Ar). Samples annealed
under vacuum showed a slight increase in density rather than expanding. This result confirms this
hypothesis and suggests that H2 plays a key role in the expansion process.

2.4 Part Production

The Cu alloy powders were consolidated to assess the level of porosity. There Cu alloy powders
were compacted at 0.5, 1, and 2 GPa and the apparent densities after annealing were 2.83 g/cc
(31.3% dense), 4.06 g/cc (45.4% dense), and 4.75 g/cc (53.1% dense), respectively. The density
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of 31.3% (68.7% porosity) for the 0.5 GPa compact is a remarkable result from a powder
metallurgy process, especially because the pore structure is not dominated by necks between
sintered particles. The amount of porosity achieved using such a basic process clearly shows that
the current limits of solid-state foaming may be reached or even exceeded using the current
methodology in association with other solid-state foaming processes.

Although the intraparticle expansion of 35%–40% is similar in extent to the best, traditional creep
expansion results, the ability to achieve greater than 65% porosity, the ideal limit of gas
entrapment,14 is a significant accomplishment, especially given the relatively minor deviation
from conventional solid-state foaming processes. Since the expansion process is controlled by
intraparticle interactions, there are considerable implications for reducing weight and/or
improving strengths in bulk engineering structures produced via powder metallurgy. Completely
unique to this process is the ability to create foamed powder. This powder can be used in loose
form (primary) or in concert with traditional powder metallurgy methods (additive). Specifically,
this additional process can potentially add 35%–40% porosity by intraparticle expansion to
current solid-state foaming methods such as creep expansion, loose-powder sintering, fugitive
templates, and any other method that utilizes a powder feedstock. Moreover, combining porous
particles with solid particles may allow engineers to create a graded density and unique properties
for a particular application.

The alloy powder was inserted into a pawn-shaped mold and annealed to determine whether
simple annealing would be sufficient to generate a sintered part. The resulting part is shown in
Fig. 6. The powder was compacted into the mold using only a screw (the threaded passage is
apparent at the bottom of the pawn). The detail of the threads and the accurate reproduction of the
mold details indicate that this process can be utilized to produce intricate geometries. In light of
these results, graded foam structures can be realized by simply blending foaming powders and
nonfoaming powders in specific ratios or patterns within a given mold structure. In this manner,
the density and consolidated properties can be tailored for a particular application. There can be a
number of potential applications if this process is extended to other metals and alloys: custom
dental or other biological implants, hydrogen fuel cells, plates or parts for advanced ballistic
protection, etc.
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Fig. 6 The ease of processing allows for complex parts to be created. This “pawn” was made by filling a
2-piece mold with the Cu alloy powder and applying pressure at one end with a machine screw. The
detail of the mold was reproduced with significant accuracy (scale in centimeters).

3. Digital Image Processing

3.1 Imaging Porosity in Foamed Powder Particles

A 10-kV SEM image of a Cu–Sb foamed particle is shown in Fig. 7. The size of this
representative particle is on the order of tens of microns, while the porosity (seen breaking
through to the surface) is at least an order of magnitude smaller. To visualize the interior porosity
of the particle, a FIB was used to slice through the particle at increments of 250 nm. Figure 8a
shows the interior porosity for this same Cu–Sb particle. In slicing through the particle, in
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addition to interconnected porosity, the particle in Fig. 7 is composed of several particles that
have merged together during the mechanical alloying process. It is evident that these were
separate particles, because there is porosity associated with the boundary between adjacent
merged particles. Figure 8b shows the interior porosity for another Cu–Sb particle. As with the
first particle, streaking is observed due to the FIB milling of the foamed particle. To reduce the
streaking, subsequent particles were coated with platinum.

Fig. 7 SEM image of a Cu–Sb foamed particle generated by the solid-state foaming technique
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(a) (b)

Fig. 8 SEM image of a Cu–Sb foamed particle generated by the solid-state foaming technique: a) same
powder particle as that in Fig. 7, and b) second powder particle that exhibits the same pore structure

3.2 3-D Reconstruction Method for Foamed Powder Microstructure

A subsequent smaller area was imaged and FIB milled to produce a 3-D representation of the
foam microstructure, an example of which is shown in Fig. 9. The porosity in the image must be
segmented to reconstruct the 3-D nature of the porosity and matrix and to characterize the
statistics associated with the metal foam. The similar image contrast in the interior of the pores
and the streaks complicates the image segmentation process. Traditional digital image processing
techniques—including leveling, utilizing fast Fourier transforms (FFTs) to attempt to remove
streaks, and various image processing filters—were applied, but were unsuccessful at segmenting
the pore microstructure. There are a number of different image processing techniques that could
be applied if streaks could be removed from the initial imaging stage, including automated region
growing techniques30,31 or customized filters/kernels.30,32 Future work will investigate techniques
(e.g., filling the porosity prior to FIB sectioning, X-ray tomography) for improving image quality
to allow for automating the segmentation, reconstruction, and characterization steps.
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Fig. 9 Close-up SEM image of a Cu–Sb foamed particle generated by the solid-state foaming technique.
The ability to observe the pore structure below the FIB surface on the SEM image indicates that
these pores appear tortuous (nonspherical) and highly interconnected.
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Manual image segmentation was used to delineate the porosity in the foam microstructure. The
intensity of a stack of images was rescaled to produce lighter intensities, the images were printed
out on standard paper, and users manually traced around the porosity in the sample with a dark
marker (Fig. 10). After the porosity was outlined in the images, the images were scanned back
into a digital image form and rescaled to original pixel dimensions. The pores contained entirely
in the image were traced around the pore boundary. The pores that were cut off by the edge of the
image were traced along the pore on the interior of the image and were also traced along the
intersection of the pore with the image boundary. In this manner, each pore was entirely enclosed
by a black line, which was easily segmented into a binary image and then the enclosed pores were
filled using a binary “fill holes” operation. The output binary image is shown in Fig. 11, where
white represents a pore region and black represents the metal matrix. To visualize this on the
original image, Fig. 12 shows the original image with green denoting the matrix, blue denoting
the pores, and red denoting the pore boundaries. To the eye, the manual segmentation process did
an adequate job of separating the pore regions from the matrix for further analysis of the
microstructure.
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Fig. 10 Manual segmentation of SEM image of a Cu–Sb foamed particle generated by the solid-state
foaming technique. After manually tracing the pores, the images were scanned and the pore
outlines were automatically identified via image processing.
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Fig. 11 SEM binary image of a Cu–Sb foamed particle where black is the matrix and white is the porosity.
This binary image can be used for subsequent characterization of the microstructure statistics.
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Fig. 12 Segmented SEM image of a Cu–Sb foamed particle where the matrix is green, the pores are blue,
and the red lines are the pore boundaries
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4. Microstructure Characterization

4.1 Two-Point Correlation Function Definition

The microstructure can now be characterized using 1-point (volume fraction) and 2-point
statistics33 (e.g., 2-point correlation functions34–37 and lineal path functions38,39). The lowest order
correlation function is the 1-point correlation function, which is the probability that a randomly
placed point in a 3-D microstructure is contained in a given phase—this is precisely equal to the
volume fraction of that phase, fi. For a 2-phase microstructure, a 2-point correlation function
(TPCF) Pij(r, θ, φ) is the probability that a straight line of length r and angular orientation (θ, φ)

randomly placed in a 3-D microstructure is such that its first end is in the phase i (where, i = 1 or
2) and the second end is contained in the phase j (where, j = 1 or 2). The variable θ is the angle
between the line and the Z-axis of the XYZ reference system, and φ is the angle between the
projection of the straight line on the XY plane and the X-axis (where the XY plane is the plane of
the SEM images and Z is perpendicular to that [FIB direction]). It is important to recognize that
the probability associated with a 2-point correlation function only concerns the events at the end
points of the line. For a 2-phase microstructure, there are 4 possible TPCFs, namely, P11(r, θ, φ),
P22(r, θ, φ), P12(r, θ, φ), and P21(r, θ, φ). However, only 1 of the 4 TPCFs is independent, as the
following relationships exist.

P11(r, θ, φ) + P22(r, θ, φ) + P12(r, θ, φ) + P21(r, θ, φ) = 1, (1)

P12(r, θ, φ) = P21(r, θ, φ), (2)

P11(r, θ, φ) + P12(r, θ, φ) = f1. (3)

Hence, for the following analysis, the TPCF P11(r, θ, φ) will be used for θ = 90◦ and for 4 values
of φ (= {−45◦, 0◦, 45◦, 90◦}). In the following analysis, phase 1 is the porosity and phase 2 is the
matrix.

TPCFs are often normalized to interpret their results. In many cases, the TPCF is normalized by
the volume fraction fi or the volume fraction squared f 2

i . Normalizing the TPCF by fi will force
P11 (r, θ, φ)→ 1 as r → 0 (since the TPCF P11 (r) will approach the volume fraction f1 at
infinitely small distances). Normalizing the TPCF by f 2

i will force P11 (r, θ, φ)→ 1 as r →∞.
This normalization approach (TPCF/f 2

i ) is often used because, at large distances, there is no
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correlation between the 2 points and the probability is solely determined by the probability of
obtaining that particular phase.

P ∗11 (r, θ, φ) =
P11 (r, θ, φ)

f 2
1

. (4)

There are 2 different scenarios that can occur with 2-point correlation functions: a scenario where
the image is nonperiodic (i.e., an experimental microstructure image) and a scenario where the
image is periodic (i.e., a reconstructed microstructure). Example MATLAB scripts for calculating
TPCFs in either case are included in Appendixes A and B. Appendix A contains 2 different
methods of calculating TPCFs—with and without using FFTs— to verify that the FFT method is
giving the appropriate statistics.

4.2 Lineal Path Function Definition

The lineal path function (LPF)38,39 Lii (r, θ, φ) is the probability that a line of length r located
randomly in a microstructure is entirely in phase i. This parameter gives more insight into the
connectivity and clustering tendencies of certain phases (i.e., porosity). We are interested in LPFs
for porosity along directions identical to the TPCF case. Similar to the TPCF, the LPF can be
normalized to aid in analysis. For instance, it might be informative to compare the LPF to the
probability that there could be a random occurrence of a particular phase in succession, i.e.,

L∗11 (r, θ, φ) =
L11 (r, θ, φ)

fn
1

, (5)

where n is the number of connected phases contained in line of length r. For instance, the LPF
would be divided by f 2

i for 2 connected phases in a row, f 3
i for 3 connected phases in a row, etc.

This normalization would be informative for ascertaining whether the connectivity is merely a
function of a random microstructure of a certain volume fraction (L∗11 (r, θ, φ) ≤ 1) or whether it
is a trait of the microstructure (L∗11 (r, θ, φ) > 1). However, since most microstructures are not
random and do display some level of connectivity, which would cause L∗11 (r, θ, φ) to increase
until L∗11 (r, θ, φ) = 0, the LPF L11 (r, θ, φ) is often a more informative metric. Similar to TPCFs,
there are 2 different scenarios that can occur: periodic and nonperiodic images. An example
MATLAB script for calculating LPFs in nonperiodic images is included in Appendix C. Both
2-point statistics were used to characterize the spatial arrangement of porosity within the foam,
since the TPCF represents the spacing between porosity and the LPF represents the connectivity
of porosity.
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The difference between the TPCF P11 (r) and the LPF L11 (r) (for arbitrary {θ, φ} direction) is
schematically depicted in Fig. 13. For this schematic, a 1-D representation of 2 phases was
chosen as it corresponds to this report, i.e., porosity in gray boxes and matrix in white boxes.
Figure 13 shows the combination of boxes that are accounted for in both the TPCF P11 (r) and
LPF L11 (r) for distances of r = 1, r = 2, and r = 3. First, notice that as the distance increases,
the number of possible combinations for the TPCF increases. Recall that the TPCF does not
consider the boxes in between; only the boxes at the end of the line. However, the LPF requires
that all boxes along the line belong to a particular phase; therefore, the probability of this
occurring decreases with increasing distance. Additionally, this schematic shows that the TPCF
represents the spacing between porosity while the LPF represents the connectivity of porosity.
This example is the same concept as that used to calculate the 2-point statistics P11 (r, θ, φ) and
L11 (r, θ, φ) for the 3-D reconstructed microstructure.

Fig. 13 One-dimensional schematic showing the difference between TPCF
P11 (r) and LPF L11 (r) for distances of r = {1, 2, 3}
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4.3 One-Point and Two-Point Statistics of Foamed Powder Particles

4.3.1 One-Point Statistics

There are a number of different 1- and 2-point microstructure statistics that can be computed from
the reconstructed microstructure. In terms of 1-point statistics, the area fraction or volume
fraction fi is most common. Figure 14 is the variation in the area fraction as a function of the
segmented slices through the reconstructed dataset. The average fi line for the 3-D microstructure
is shown (µ = 37.1%) as well as the 1 standard deviation lines (µ± σ = 37.1%± 3.6%).
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Fig. 14 The variation in area fraction as a function of the FIB slices through the
3-D dataset

An additional method for examining the microstructure using 1-point statistics is to segment each
image into multiple windows with a particular size. This method allows the calculation of
multiple area fractions within a single image and examines the variation in this area fraction
distribution as a function of window size (length scale). This concept is a premise for the
multiscale analysis of area fractions code,40–42 which can calculate the isotropic40 and

22



directional41 representative length scales of microstructures using only 1-point statistics. The
representative length scales (for anisotropic microstructures) or representative volume elements of
various microstructure features may provide insight into material properties.

4.3.2 Two-Point Correlation Function Statistics

The TPCFs P11 (r, φ) for the 4 directions were calculated for the foam microstructure. Figure 15
is an example of the TPCFs for θ = 0◦, showing the variability in the TPCF as a function of slice
and distance. Moreover, this shows that normalizing the TPCF for each slice can help show
convergence of the TPCF (to random behavior) beyond the microstructural length scale.
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Fig. 15 TPCF as a function of distance for θ = 0◦ (enlargement of Fig. 16a). The
red curves denote the TPCFs from the different slices and the black curve
is the mean TPCF throughout the entire 3-D dataset.

Figure 16 shows the TPCF for all 4 directions, wherein each slice represents a red curve and the
black curve is the mean TPCF over the entire 3-D dataset. The distribution of different starting
points for each slice is representative of the different area fractions for each slice (i.e.,
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P11 (r = 0) = f1). At large distances (r ≥ 4 µm), the convergence to a particular value of P11

(with fluctuations) is due to the randomness of the microstructure (which corresponds to the area
fraction squared f 2

i ) rather than any true correlation between the porosity. Therefore, it is
instructive to normalize the TPCF by dividing by the area fraction squared f 2

i , which will be used
in the subsequent analysis of TPCFs.
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Fig. 16 TPCF as a function of distance for θ of a) 0◦, b) 90◦, c) +45◦, and d) −45◦. The red curves denote
the TPCFs from the different slices and the black curve is the mean TPCF over the entire 3-D
dataset in the various directions.
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Figure 17 shows the normalized TPCF for all 4 directions, wherein each slice represents a red
curve and the black curve is the mean TPCF over the entire 3-D dataset. Another way to visualize
the combined information from the different slices is calculate the standard deviation of the
normalized TPCF and plot this along with the mean behavior for the entire microstructure
(Fig. 18). In both cases, notice that the Y-axis represents the normalized TPCF (divided by f 2

1 )
and that the mean TPCF approaches a value of 1 at less than 2 nm. This length scale represents a
representative length scale for the microstructure, since after 2 nm, the probability that there is
any correlation with a phase greater than 2 nm is purely random. Moreover, the similarity
between the TPCFs in the different directions (i.e., the different subfigures) indicates that the
microstructure is isotropic. This is further substantiated by overlaying the mean TPCFs and
1-standard-deviation curves (dashed lines) on 1 plot (Fig. 19).
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Fig. 17 Normalized TPCF as a function of distance for θ of a) 0◦, b) 90◦, c) +45◦, and d) −45◦. The red
curves denote the TPCFs from the different slices and the black curve is the mean TPCF over the
entire 3-D dataset in the various directions.
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Fig. 18 Normalized TPCF as a function of distance for θ of a) 0◦, b) 90◦, c) +45◦, and d) −45◦. The
dashed lines bounding the mean TPCF represent 1 standard deviation from the mean.
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Fig. 19 The mean normalized TPCFs for the 4 directions along with the 1 standard deviation
lines. The microstructure approaches P11 = 1 within 2 µm. Beyond 2 µm, the TPCF
approaches that given by the area fraction of porosity squared (i.e., f21 ), i.e., a purely
random correlation between porosity.
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A more quantitative method to define and compare representative length scales would be to
identify the length scale at which the TPCF is some percentage above that of a random correlation
between phases (i.e., P11/f

2
1 = 1). Figure 20 shows a magnified view of the preceding plots for

porosity over the range surrounding the critical distance (qualitative) of 2 nm. Using a critical
normalized TPCF value of either 1.1 or 1.5 results in length scales that are on the order of 1.5 µm
and 0.8 µm, respectively. There is some degree of scatter between the different directions, which
indicates that there may be a small degree of anisotropy to the microstructure.
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Fig. 20 The mean normalized TPCFs for the 4 directions along with the representative length
scales given by the TPCF intersection with P11 = 1.1 and P11 = 1.5 for the porosity

A similar quantitative analysis of microstructure length scales using TPCFs was performed on the
Cu–Sb matrix as well. Figure 21a–d has similar variability in the slice TPCFs for the 4 different
directions (0◦, 90◦, +45◦, and −45◦, respectively). The mean TPCFs for the directions can use the
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same critical TPCF values (1.1 and 1.5) to assess the microstructure length scales. A few
observations can be made about Fig. 21. First, the normalized TPCF scale is much smaller than
for the porosity. Recall that the TPCF is normalized by f 2

i so that the TPCF will go to unity as the
TPCF approaches the same probability as that of 2 phases at distance r randomly occurring. Since
the matrix volume fraction is much greater than that of the porosity, lower normalized TPCF
values are expected at small distances. Second, the critical normalized TPCF value of either 1.1 or
1.5 results in length scales that are on the order of 1.0 µm and 0.3 µm, respectively. This length
scale is much lower than that for the porosity at the same normalized TPCF values. This function
is again influenced by the volume fraction fi in the normalization—the higher volume fraction
means that there is a greater probability of random occurrence of Cu–Sb matrix in the
microstructure at distance r, which leads to lower critical length scales. In both the porosity and
matrix analyses using the aforementioned methodology, the critical length scale is on the order of
1 µm, though, which again reinforces the small scale of the porosity using the present solid-state
foaming process.
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Fig. 21 The normalized TPCFs for the matrix phase for the 4 directions for the slices shows similar
variability and length scales as the porosity TPCFs (a–d). The mean TPCFs for the matrix in the 4
directions was computed along with the representative length scales given by the TPCF
intersection with P22 = 1.1 and P22 = 1.5 (e).
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4.3.3 Lineal Path Function Statistics

The lineal path function is another way of statistically characterizing the microstructure. Whereas
the TPCFs assess the spacing of microstructure features, the LPFs assess the connectivity of the
microstructure. Figure 22 shows slice and mean LPFs for 0◦ (a,c) and 90◦ (b,d) in the porosity
(a,b) and the Cu matrix (c,d). Here, the lineal path function is not normalized at all. Hence, the
lineal path function is the probability that a line of length r will completely lie within the phase.
As the line length increases, there is a lower probability that this will occur. In a similar manner to
the TPCF, a critical LPF value can be used to compare length scales. For instance, critical LPF
values of either 0.25 (25%), 0.10 (10%), or 0.01 (1%) result in length scales (from the 0◦ LPF
plots) of approximately 0.4 µm, 1.2 µm, and 2.9 µm for the porosity and approximately 1.6 µm,
3.3 µm, and 7.2 µm for the matrix, respectively. The values for the 90◦ LPFs are listed in the plots
as well. Therefore, the length scales of the matrix microstructure are on the order of 2–3 times
that of the porosity.

The LPFs indicate that the microstructure is far from random at these scales. The spacing between
pixels in the microstructure is such that there are 80 pixels in 1 µm. Except for the highest volume
fractions, it is very unlikely that 80 pixels picked at random will result in the same phase. For
example, the probability of randomly obtaining a line length of 0.1 µm (100 nm, 8 pixels) with a
volume fraction of 37% (porosity) or 63% (matrix) is 0.035% and 2.482%, respectively.
Increasing this line length to 0.2 µm (200 nm, 16 pixels) results in a probability of 1.2e-05% and
0.062%, respectively. Comparing these values to the computed LPFs at 0.1 µm in Fig. 22 shows
that the probabilities calculated indicate that the microstructure is far from random at these scales.

The 2-point correlation statistics and lineal path statistics can be important for reconstruction of
microstructures that are statistically representative of the original microstructure.43–45 While
microstructures can be reproduced with 2-point correlation statistics, recent studies have shown
that, in some cases, this can lead to microstructures that approximate the TPCFs used in the
objective function of the optimization process, but fail to yield similarity to the initial
microstructure.43 Hence, it is often necessary to characterize multiphase microstructures with
both TPCFs and LPFs.
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Fig. 22 LPF as a function of distance for θ of 0◦ (a,c); 90◦ (b,d); for the porosity, i.e., L11 (r, θ) (a,b); and
the matrix, i.e., L22 (r, θ) (c,d). The colored lines are the LPF computed from individual slices (red
for porosity, blue for matrix) and the dashed lines show the calculation of the length scale for
particular values of the LPF.
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5. Conclusions

A process has been developed for creating Cu foams with porosities in excess of 65% by an
intraparticle expansion solid-state foaming process combined with powder sintering.46 The
relatively simple technique involves only 2 steps: milling the powder and then annealing it in a
reducing atmosphere. The working hypothesis is that oxides within the particles are reduced
during annealing, creating steam that expands into microscale voids. The porosity is very fine,
averaging 1 µm in diameter, and is characterized by a nonspherical morphology. After 1 h at
600 ◦C, the pores show extensive coalescence and percolation (greater than 90% open porosity).
The microstructure of the Cu alloy features a fine grain size complete with twins, and an ultrafine
to nanoscale grain size at many of the free surfaces. The ability to apply this technique in creating
a small part by sintering was demonstrated. It is expected both the process and product are
industrially scalable.

Furthermore, this report details the methods by which the powders were sectioned by FIB,
imaged with the SEM, and analyzed using a combination of digital image processing and
microstructure characterization methods. One- and 2-point statistics were used to characterize the
microstructures. The TPCFs (lineal path functions) denote that the spacing (connectivity) between
the 2 phases is on the order of 1–3 µm. Future work will examine enhancements to the processing
of these solid-state foams as well as improvements in the ability to automate the imaging and
characterization processes.
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Appendix A. MATLAB TPCF Nonperiodic Function

This appendix appears in its original form, without editorial change.
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function [TPCF] = compute_TPCF_nonperiodic(Z)

% Mark Tschopp, U.S. Army Research Laboratory, 2013-2014

% Email: mark.a.tschopp@us.army.mil

%

% This function computes a two-point correlation function matrix TPCF for

% the non-periodic 2D matrix Z. In the final step, the symmetry due to

% using the FFT functions is reduced. This TPCF is for non-periodic

% systems; periodic systems will need to be handled differently.

%

% Note that the TPCF along a particular direction can be assessed from this

% matrix. For instance, the TPCF along the x direction of matrix Z (size

% 1000 x 1000) is TPCF(1:1000,1) or along the y direction is TPCF(1,1:1000)

% or along 45 degree line is <a = TPCF(1:1000,1:1000); TPCF =

% a(eye(1000)==1);> etc. When plotting TPCF along angles, remember to

% account for the change in the spacing between elements of the matrix,

% i.e., d = d*sqrt(2) for the 45 degree case. For -45 degree case, use the

% bottom half of matrix TPCF, i.e.,

% <a = flipud(TPCF(size(TPCF,1)-1000:size(TPCF,1),1:1000));

% TPCF = a(eye(1000)==1);>.

f = ifftn(fftn(Z,2*size(Z)).*conj(fftn(Z,2*size(Z))));

f1 = ifftn(fftn(ones(size(Z)),2*size(Z)).*conj(fftn(ones(size(Z)),...

2*size(Z))));

f2 = f./f1;

TPCF = f2(1:size(f2,1),1:size(Z,2));

end
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function [TPCF] = compute_TPCF_nonperiodic_slow(Z)

% Mark Tschopp, U.S. Army Research Laboratory, 2013-2014

% Email: mark.a.tschopp@us.army.mil

%

% This function computes a two-point correlation function matrix TPCF for

% the non-periodic 2D matrix Z in direction X (dimension 1 of matrix Z).

% This TPCF is for non-periodic systems; periodic systems will need to be

% handled differently.

%

% Note that the TPCF along this direction is assessed for each row in the

% matrix Z. For instance, TPCF(1,:) gives the TPCF for row 1 of matrix Z,

% TPCF(2,:) gives the TPCF for row 2 of matrix Z. The 'mean' operation can

% be used to give the global TPCF for the 2D matrix Z in this direction.

%

% The TPCF in direction Y (dimension 2 of Z) can be computed using:

% [TPCF] = compute_TPCF_nonperiodic_slow(transpose(Z))

TPCF = zeros(size(Z));

for i=1:size(Z,1)

a = Z(i,:);

b = find(a == 1);

n = length(b(b <= length(Z)));

for j = 1:n-1

c = b - b(1);

c = c(2:end);

d = c(c <= length(Z));

TPCF(i,d) = TPCF(i,d) + 1;

b = c;

end

end

% Divide by the total number in each row

for i = 1:size(Z,2)-1

TPCF(:,i) = TPCF(:,i)/(size(Z,2)-i);

end

end
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Appendix B. MATLAB TPCF Periodic Function

This appendix appears in its original form, without editorial change.
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function [TPCF] = compute_TPCF_periodic(Z)

% Mark Tschopp, U.S. Army Research Laboratory, 2013-2014

% Email: mark.a.tschopp@us.army.mil

%

% This function computes a two-point correlation function matrix TPCF for

% the periodic 2D matrix Z. Because of the periodic boundary, this TPCF

% matrix is half of the size of the original 2D matrix Z. This TPCF is for

% periodic systems only; non-periodic systems will need to be handled

% differently.

%

% Note that the TPCF along a particular direction can be assessed from this

% matrix. For instance, the TPCF along the x direction of matrix Z (size

% 1000 x 1000) is TPCF(1:500,1) or along the y direction is TPCF(1,1:500)

% or along 45 degree line is TPCF(eye(500)==1), etc. When plotting TPCF

% along angles, remember to account for the change in the spacing between

% elements of the matrix, i.e., d = d*sqrt(2) for the 45 degree case. For

% -45 degree case, use the bottom half of matrix TPCF, i.e., <a =

% TPCF(flipud(eye(500))==1)>.

f = ifftn(fftn(Z).*conj(fftn(Z)));

f = f(1:size(f,1)/2,1:size(f,2)/2);

TPCF = f/numel(Z);

% If you want to expand to the same size as Z, use:

% TPCF = (ifftn(fftn(Z).*conj(fftn(Z))))/numel(Z);

% or use symmetry to expand... (because the TPCF at d=100 is the same as

% d=300 for a 400x400 matrix Z)

end
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Appendix C. MATLAB LPF Nonperiodic Function

This appendix appears in its original form, without editorial change.
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function [LPF] = compute_LPF_2D_nonperiodic(Z)

% Mark Tschopp, U.S. Army Research Laboratory, 2013-2014

% Email: mark.a.tschopp@us.army.mil

%

% This function computes a lineal path function matrix TPCF for the

% non-periodic 2D matrix Z in direction X (dimension 1 of matrix Z). This

% LPF is for non-periodic systems; periodic systems will need to be handled

% differently.

%

% Note that the LPF along this direction is assessed for each row in the

% matrix Z. For instance, LPF(1,:) gives the LPF for row 1 of matrix Z,

% LPF(2,:) gives the LPF for row 2 of matrix Z. The 'mean' operation can

% be used to give the global LPF for the 2D matrix Z in that direction.

%

% The LPF in direction Y (dimension 2 of Z) can be computed using:

% [LPF] = compute_LPF_2D_nonperiodic(transpose(I))

%

% The LPF for a different phase can be computed using

% [LPF] = compute_LPF_2D_nonperiodic(~I)

% for 2 phases (in a logical matrix), OR

% [LPF] = compute_LPF_2D_nonperiodic(I==n)

% for multiple phases

% LPF of phase Z==1

LPF = zeros(size(Z));

for i = 1:size(Z,1)

a = Z(i,:);

b = find(a == 1);

while length(b) > 1

c = diff(b);

d = find(c~=1);

if isempty(d)==0 && d(1)~=1;

e = b(2:d(1))-b(1);

f = sort(e,'descend');

LPF(i,e) = LPF(i,e) + f(e);

b = b(d(1)+1:end);

elseif isempty(d)==1;

e = b(2:end)-b(1);

f = sort(e,'descend');

LPF(i,e) = LPF(i,e) + f(e);

b = 1;

elseif d(1)==1;

b = b(d(1)+1:end);
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end

end

end

% Divide by the total number in each row

for i = 1:size(Z,2)-1

LPF(:,i) = LPF(:,i)/(size(Z,2)-i);

end
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List of Symbols, Abbreviations, and Acronyms

2-D 2-dimensional

3-D 3-dimensional

EBSD electron backscatter diffraction

FFT fast Fourier transform

FIB focused ion beam

FIBCCI focused ion beam channeling contrast imaging

LPF lineal path function

SEM scanning electron microscopy

TPCF 2-point correlation function
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